A D9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster

نویسندگان

  • Renaud Dallerac
  • Carole Labeur
  • Jean-Marc Jallon
  • Douglas C. Knipple
  • Wendell L. Roelofs
  • Claude Wicker-Thomas
چکیده

Drosophila melanogaster cuticular pheromones consist of unsaturated hydrocarbons with at least one double bond in position 7: 7 tricosene (T) in males and 7,11 heptacosadiene (HD) in females. However, in many African populations like the Tai strain, females possess low levels of 7,11 HD and high levels of its positional isomer 5,9 HD. We have previously isolated a desaturase gene, desat1, from the Canton-S strain (CS), a 7,11 HD-2-rich morph of D. melanogaster. This desaturase is located in 87C, a locus that has been involved in the difference between 7,11 HD and 5,9 HD morphs. Therefore, we have searched for different desaturase isoforms in both strains. We first cloned desat1 in the Tai strain and report here functional expression of desat1 in CS and Tai. In both strains, the Desat1 enzymes have the same D9 specificity and preferentially use palmitate as a substrate, leading to the synthesis of v7 fatty acids. Also found was a desaturase sequence, named desat2, with a homologous catalytic domain and a markedly different N-terminal domain compared with desat1. In CS genome, it lies 3.8 kb upstream of desat1 and is not transcribed in either sex. In the Tai strain, it is expressed only in females and acts preferentially on myristate, leading to the synthesis of v5 fatty acids. We suggest, therefore, that desat2 might play a control role in the biosynthesis of 5,9 HD hydrocarbons in Tai females and could explain the dienic hydrocarbon polymorphism in D. melanogaster.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cuticular Hydrocarbon Content that Affects Male Mate Preference of Drosophila melanogaster from West Africa

Intraspecific variation in mating signals and preferences can be a potential source of incipient speciation. Variable crossability between Drosophila melanogaster and D. simulans among different strains suggested the abundance of such variations. A particular focus on one combination of D. melanogaster strains, TW1(G23) and Mel6(G59), that showed different crossabilities to D. simulans, reveale...

متن کامل

The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster.

The cuticular hydrocarbon (CH) pheromones in Drosophila melanogaster exhibit strong geographic variation. African and Caribbean populations have a high ratio of 5,9 heptacosadiene/7,11 heptacosadiene (the "High" CH type), whereas populations from all other areas have a low ratio ("Low" CH type). Based on previous genetic mapping, DNA markers were developed that localized the genetic basis of th...

متن کامل

Molecular Evolution and Functional Diversification of Fatty Acid Desaturases after Recurrent Gene Duplication in Drosophila

Frequent gene duplications in the genome incessantly supply new genetic materials for functional innovation presumably driven by positive Darwinian selection. This mechanism in the desaturase gene family has been proposed to be important in triggering the pheromonal diversification in insects. With the recent completion of a dozen Drosophila genomes, a genome-wide perspective is possible. In th...

متن کامل

Toxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae)

Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized wit...

متن کامل

Rapid Evolution of Sex Pheromone-Producing Enzyme Expression in Drosophila

A wide range of organisms use sex pheromones to communicate with each other and to identify appropriate mating partners. While the evolution of chemical communication has been suggested to cause sexual isolation and speciation, the mechanisms that govern evolutionary transitions in sex pheromone production are poorly understood. Here, we decipher the molecular mechanisms underlying the rapid ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000